素数公式
Willson 定理
$p>1$ 是素数, 当且仅当 $(p-1)!=-1\bmod p$
给定自然数 $n$ , 满足 $\pi(m)
接下来要用到一些素数密度的估计.
对于任意自然数 $n$ 和 $2n$ 之间至少有一个素数.
也就是说小于等于 $2^n$ 的素数至少有 $n$ 个.
于是我们可以把这个无穷大消掉了,
$$\mathtt{isLess}(x , y)
= \left\lfloor \sqrt[ y ] {\frac {y} {1 + x}} \right\rfloor
=\begin{cases}
1, x
https://www.zhihu.com/question/311834230/answer/595009063
http://mathworld.wolfram.com/PrimeFormulas.html
http://www.m-hikari.com/ams/ams-2012/ams-73-76-2012/kaddouraAMS73-76-2012.pdf